Regularized Multivariate von Mises Distribution
نویسندگان
چکیده
Regularization is necessary to avoid overfitting when the number of data samples is low compared to the number of parameters of the model. In this paper, we introduce a flexible L1 regularization for the multivariate von Mises distribution. We also propose a circular distance that can be used to estimate the Kullback-Leibler divergence between two circular distributions by means of sampling, and also serves as goodness-of-fit measure. We compare the models on synthetic data and real morphological data from human neurons and show that the regularized model achieves better results than non regularized von Mises model.
منابع مشابه
Frobenius Norm Regularization for the Multivariate Von Mises Distribution
Penalizing the model complexity is necessary to avoid overfitting when the number of data samples is low with respect to the number of model parameters. In this paper, we introduce a penalization term that places an independent prior distribution for each parameter of the multivariate von Mises distribution. We also propose a circular distance that can be used to estimate the Kullback–Leibler d...
متن کاملSome Fundamental Properties of a Multivariate von Mises Distribution
In application areas like bioinformatics multivariate distributions on angles are encountered which show significant clustering. One approach to statistical modelling of such situations is to use mixtures of unimodal distributions. In the literature (Mardia et al., 2011), the multivariate von Mises distribution, also known as the multivariate sine distribution, has been suggested for components...
متن کاملThe von Mises Graphical Model: Regularized Structure and Parameter Learning
The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for parameter and structure learning using L1 regularization. We show that the learning algorithm is both consistent and statistically efficient. Additionally, we introduce a simple inferen...
متن کاملEfficiency of the pseudolikelihood for multivariate normal and von Mises distributions
In certain circumstances inference based on the likelihood function can be hindered by, for example, computational complexity; new applications of directional statistics to bioinformatics problems give many obvious examples. In such cases it is necessary to seek an alternative method of estimation. Two pseudolikelihoods, each based on conditional distributions, are assessed in terms of their ef...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015